CHARACTERISTICS

- support MP3, and WAV decoding
- support FAT file system
- \quad Sampling rate (KHz) : 8/11.025/12/16/22.05/24/32/44.1/48
- Hardware decoding using DSP to 24-bit DAC; dynamic range: 90dB, signal-to-noise ratio: 85 dB
- Control methods: single-line control, standard UART
- Support SPIFLASH as USB drive; direct control as USB drive
- Support operation: last audio, next audio, play, pause, stop, named audio playback, ...
- Support access to files and directories information
- Support access to status and various information
- Support replaying specified audio, pausing current audio, inserting another audio and returning to the point of pause for continuation
- Support both Chinese and English path descriptions for named audio playback
- Support intelligent assembly of audio playback from different directories
- Support 30 levels of volume control
- Support 5 types of equalizer control
- Support 7 modes of control
- Support multiple times of replay
- Support sleeping mode with power consumption as low as $600 \mu \mathrm{~A}$, and awakening via oneline control command
- Support speed forward and backward at specific time
- Support replay at specific time
- Support specific starting time
- Support BUSY signal output
- Enable stable application via comprehensive command set
- Tailor-made application for command generation

GENERAL DESCRIPTIONS

JQ8400 module is a SOC solution that combines a 16 bit MCU with an ADSP specialised in audio decoding. By using hardware decoding method, it ensures system stability, quality of sound, and small footprint matching requirements of embedded applications.

Changing contents in SPI-flash

Saving the hassle of dedicated programming MCU, SPI-flash enables direct plug-in with a computer via USB port for direct file operations as an USB drive. It largely simplified R\&D and production. For the flexibility of R\&D, control commands can be sent via one-line mode or RS232 serial communication.

By connecting the built-in USB port to a computer, the module will be recognized as an USB drive as shown below in Windows environment.

In order to use composite audio playback, a new directory named 'ZH' has to be created, and all audio files for composite playback have to be stored in it.

HARDWARE PARAMETERS

Name	Parameters
MP3 file format	1. Supports all 11172-3 bit rates and ISO13813-3 layer 3 audio decoding 2. Sampling rates (KHz): 8/ 11.025/ 12/16/22.05/ 24/ 32/44.1/48 3. Supports Normal, Jazz, Classic, Pop, Rock sound effects
	USB 2.0 standard
USB port	One-line interface, standard UART interface, TTL
UART port	DC 3.3 - 5.5V; best at 4.2V, IO port level at 3.3V
Power input	Sleep mode: 500uA; normal mode: 10mA
Default current	$18 \times 25 \mathrm{~mm}$
PCB size	-40 to 85 degree Celcius
Working temperature	5% to 95%
Humidity	

PINOUTS

五，模块管脚说明

Pins	Labels	Descriptions
1	ONE LINE	One－line interface port
2	BUSY	HIGH when playing，LOW in other conditions
3	RX	Data receive port；to be connected with TX of MCU
4	TX	Data transmit port；to be connected with RX of MCU
5	GND	Ground
6	DC－5V	Power supply；3．3V－5．0V
7	DAC－R	DAC right channel audio out
8	DAC－L	DAC left channel audio out
9	SPK－	To Speaker
10	SPK +	To Speaker

One－Line Communication Protocols

［SKIPPED：due to the need of synchronization requirement，precise adjustment via the use of oscilloscope is needed．It is not tested at all．］

UART Communication Protocols

It adopts full duplex serial communication protocol：

Baud rate 9600，8－bit data，no parity， 1 stop bit．

Message Format

Starting Code＋Command Code＋Data Length＋Data 1 －Data n＋Checksum

Starting Code ：fixed as＂AA＂（in hex）

Command Code ：01－26（in hex）

Data Length ：respective data bytes in commands；length＝1 stands for command only，no data．

Checksum : The low byte of the sum of all the bytes before the checksum byte.
Data format: high 8-bit first, low 8-bit second.

Communication Mechanism

1. Default power-on state is idle and listening for commands from MCU as a guest
2. The module will not initiate communication and a MCU must take initiative.
3. The TTL level of the serial port is 3.3 V . Use a 1 K ohm resistor if connecting with a 5 V MCU .
4. Unless otherwise specified, all data in this protocol is in hexadecimal.

Protocol Parameters

Return values of the module:-
Status of playback: default idle when power-on

00: stop, 01: playing, 02: pause

Storage definition: default state after switching storage is idle

USB: 00, SD: 01, FLASH:02, NO DEVICE: FF
Volume: There are totally 31 level from 0 to 30, default level when power-on is level 20.
Playing mode definition: default state when power-on is stopping at single audio playback
Loopback All (00): play all audio in sequence, loops back to the first audio at the end

Single audio loop (01): continuously repeat playback of the current audio
Single audio stop (02): playback the current audio once and stop

Play all at random (03): randomly play all audio
Directory loop (04): Sequentially play all audios in the current directory, not including any subdirectory

Random play in directory (05): randomly play all audio in the current directory

Sequential play in directory (06): Sequentially play all audios in the current directory, excluding all sub-directory

Sequential play (07): Sequentially playback all audio on the storage, then stop

Definition of EQ: NORMAL (00), POP (01), ROCK (02), JAZZ (03), CLASSIC (04)
Default EQ when power-on: MP3 channel (00)

MP3 channel (00): Playing via MP3 channel, DAC output MP3 music

AUX channel (01): DAC output audio from P26 and P27

MP3+AUX (02): AUX and MP3 channels open at the same time, DAC ouput combines MP3 audio with input of P26 and P27

Definition of combined playback: combines according to file names stored in the " ZH " directory. It is advisable to use two digits as file names; for instance, $01 . \mathrm{mp} 3,02 . \mathrm{mp} 3$, two alphabets or one Chinese character may be used though.

COMMANDS

Status Inquiry (01)
Command: AA 0100 AB

Return: AA 0101 status SM

Comments: This command can be used any time.

Play (02)

Command: AA 0200 AC

Return: none

Comments: Upon receipt of this command, the module will play at the beginning of the current audio.

Pause (03)
Command: AA 0300 AD

Return: none

Stop (04)

Command: AA 0400 AE

Return: none

Last song (05)

Command: AA 0500 AF

Return: none

Next song (06)
Command: AA 0600 BO

Return: none

Specify song (07)

Command: AA 0702 filename(Hi) filename(Lw) SM

Return: none
Example: AA 07020008 BB play the $8^{\text {th }}$ audio of the current drive, available number of audio from 1 to 65535

Specify drive and directory (08)
Command: AA 08 length drive directory SM
Comments: length $=$ length of drive + length of directory $=1+$ length of directory
Example: /AA/BB*???
Command : 0xAA, 0x08, 0x0B , 0x01, 0x2F, 0x41, 0x41, 0x2F, 0x42, 0x42, 0x2A, 0x3F, 0x3F, 0x3F, 0×09
[This example is modified from an example of Chinese directory and file name. Please testify it yourself. $/=0 \times 2 F,{ }^{*}=0 \times 2 A, ?=0 \times 3 F, A=0 \times 41, B B=0 \times 42, m=0 \times 6 d, p=0 \times 70,3=0 \times 33$]

Inquiry of current on-line storage (drive number) (09)
Command: AA 0900 B3

Return: AA 0901 drive SM

Comments: Drive code is differentiated by the position of bit: USB: bit(0) SD: bit(1) Flash: bit(2)
This command informs the current drive code. It is advisable to inquire the current drive code before switching drive.

Inquiry of the current playing storage (drive number) (OA)

Command: AA OA 00 B4

Return: AA OA 01 drive code SM

Switch to specified drive (OB)
Command: AA OB 01 drive code SM

Return: none

Comments: If the drive is on-line, this command can switch to the specified drive and wait for playing of the $1^{\text {st }}$ audio there.

Examples:
AA 0B 0100 B6 : switch to a USB drive

AA 0B 0101 B7 : switch to a TF card drive
AA 0B 0102 B8 : switch to a flash card

Inquiry of total number of audio files (0C)

Command: AA OC 00 B6

Return: AA OC 02 Number(hi) Number(Lw) SM

Inquiry of current file number (OD)

Command: AA OD 00 B7

Return: AA OD 02 Filenumber(Hi) Filenumber(Lw) SM

Last Directory (0E)
Command: AA 0E 00 B8

Return: none

Comments: this command will play the $1^{\text {st }}$ audio of the directory.
[/ am not sure if this command means to go up one level in the directory tree. Please test it yourself.]

Next directory (0F)
Command: AA OF 00 B9

Return: none

Comments: this command will play the $1^{\text {st }}$ audio of the directory.
[/ am not sure if this command means to go down one level in the directory tree. Please test it yourself.]

Stop playing (10)
Command: AA 1000 BA

Comments: This command terminates the current operation. If the current operation is insertion play then it will return to the previous status.

Inquiry of the first audio (11)
Command: AA 1100 BB

Return: AA 1102 Filenumber(Hi) Filenumber(Lw) SM

Comments: This command returns the ordinal number of the first audio in the current directory.
[/ am not sure why we need this command??]

Inquiry of the total number of audio in the directory (12)
Command: AA 1200 BB

Return: AA 1202 Filenumber(Hi) Filenumber(Lw) SM
Comments: The return number does not include the number of files in the sub-directory

Volume control (13)

Command: AA 1301 VOL SM

Return: none

Example: AA 130114 D2 : set the volume to level 20

Volume increase by one level (14)

Command: AA 1400 BE

Return : none

Volume decrease by one level (15)

Command: AA 1500 BF

Return: none

Insertion play (16)

Command: AA 1603 drive Filenumber(Hi) Filenumber(Lw) SM

Return: none

Example: AA 1603000009 CC : play the $9^{\text {th }}$ audio in the USB drive

Comments: After the specified playback finishes, it will return to the previous break point and play

Specify playing directory (17)

Command: AA 17 length drive directory SM

Return: none

Comments: length = drive length + directory length = 1+ directory length

Stop insertion play
Command: use Stop playing (10)

Set up loop back mode (18)

Command: AA 1801 loop mode SM

Return: none

Example: AA 180103 C6 : set to single audio playback and stop

Set up number of repeated loops (19)
Command: AA 1902 number(Hi) number(Lw) SM

Return: none

Comments: This command only works when the module is set for Loop back all, Single Audio loop and Directory loop.

Example: AA 19020006 CB : repeat loop back 6 times.

EQ setting (1A)
Command: AA 1A 01 EQ SM

Return: none

Example: AA 1A 0102 C7 : set to ROCK mode

Combined playback (1B)

Command: AA 1B length Audio1(Hi) Audio1(Lw) ... AudioN(Hi) AudioN(Lw) SM

Return: none

Example: AA 1B 0430313032 8C : combined playback of both file " 01 " and "02"
Comments: Combined playback using file names is more convenient and accurate, and free from the constraint of copying sequence.

Stop combined playback (1C)

Command: AA 1C 00 C6

Return: none

Comments: Stop combined playback and return to the previous state.

Set up channel (1D)

Command: AA 1D 01 channel SM

Return: none

Inquiry of the short file name (1E)

Command: AA 1E 00 C8

Return: AA 1E length filename SM

Select audio but not playback (1F)
Command: AA 1F 02 Filenumber(Hi) Filenumber(Lw) SM

Return : none

Repeat reading control (20)

Command: AA 2004 Start_minute start_second stop_minute stop_second SM

Return: none

Stop repeat reading (21)
Command: AA 2100 CB

Return: none

Specify duration for fast backward (22)

Command: AA 2202 duration(Hi) duration(Lw) SM

Return: none
Comments: duration in seconds

Specify duration for fast forward (23)

Command: AA 2302 duration(Hi) duration(Lw) SM

Return: none
Command: duration in seconds

Inquiry of duration of the current audio (24)

Command: AA 2400 CE

Return: AA 2403 hour minute second SM

Turn on playback duration (25)
Command: AA 2500 CF

Return: AA 2503 hour minute second SM

Comments: The module will return when playback finishes at specified time.

Stop playback duration (26)

Command: AA 2600 D0

Return: none
Comments: Turn off playback duration

